Indian Statistical Institute, Bangalore Centre. Mid-Semester Exam : Topics in Discrete Probability

Instructor : Yogeshwaran D.

Date : September 11th, 2018.

Max. points : 20.

Time Limit : $2\frac{1}{2}$ hours.

Answer any two questions only.

Give necessary justifications and explanations for all your arguments. If you are citing results from the class or assignments, mention it clearly.

- 1. Let C(G) be the size of the largest clique (i.e., a complete subgraph) in a graph G. Let G(n, P) denote the Erdös-Rényi graph with n vertices and the probability of an edge being present is p. Show the following.
 - (a) Let $n^2 p_n^3 \to 0$. Show that $\mathbb{P}(C(G(n,p)) \ge 4) \to 0$. (3).
 - (b) Let $n^2 p_n^3 \to \infty$. Show that $\mathbb{P}(C(G(n, p)) \ge 4) \to 1$. (7).
- 2. (a) For $d, k \in \mathbb{N}$. Consider the graph $G_{d,k} = \mathbb{Z}^d \times \{1, \ldots, k\}$. For what values of d and k does the bond percolation on $G_{d,k}$ have a non-trivial phase transition i.e., $p_c(G_{d,k}) \in (0, 1)$. (3).
 - (b) Let $d \ge 1$ and $e_1 = (1, 0, ..., 0)$ denote the standard unit vector in \mathbb{R}^d . Consider the bond percolation on \mathbb{Z}^d . Define $\tau_p(x, y) := \mathbb{P}_p(x \leftrightarrow y)$ for $x, y \in \mathbb{Z}^d$. Show the following :
 - i. Show that $\eta(p) := \lim_{n \to \infty} \frac{-\log \tau_p(O, ne_1)}{n}$ exists and is finite for all p > 0. (3)
 - ii. Show that $\eta(p)$ is non-increasing for all p, strictly positive for all $p \in (0, p_c)$ and 0 for all $p > p_c$. (4) Hint : Compare $\tau_p(O, 2ne_1)$ and $\tau_p(O, x)^2$ for any $x \in \partial \Lambda_n$.
- 3. (a) Let $d \ge 1$ and consider bond percolation on \mathbb{Z}^d . Show that for all $x, y \in \mathbb{Z}^d$,

$$\tau_p(x,y) = \lim_{n \to \infty} \mathbb{P}_p\left(\{ x \stackrel{\Lambda_n}{\leftrightarrow} y \} \cup \left(\{ x \leftrightarrow \partial \Lambda_n \} \cap \{ y \leftrightarrow \partial \Lambda_n \} \right) \right)$$

and that $\tau_p(x, y)$ is continous as a function of p. (5)

(b) Consider bond percolation on \mathbb{Z}^2 with p = 1/2. Call G the subgraph induced by bond percolation on \mathbb{Z}^2 and G^* the dual subgraph on the dual lattice $(\mathbb{Z}^*)^2$. Let $R_n := ([-(n-1), n] \times$ $[-n, n]) \cap \mathbb{Z}^2$ be a rectangle on the planar square lattice and $R_n^* := ((\frac{1}{2}, \frac{1}{2}) + [-n, n] \times [-n, n-1]) \cap (\mathbb{Z}^*)^2$ be the rotation of R_n but in the dual lattice. Let B_n be the event that there exist infinite G-paths from the top and bottom of ∂R_n in $\mathbb{Z}^2 \setminus R_n$ and infinite G^* -paths from the left and right of ∂R_n^* in $(\mathbb{Z}^*)^2 \setminus R_n^*$. Show that

$$\mathbb{P}_{1/2}[B_n] \ge 1 - 4\mathbb{P}_{1/2}[\partial R_n \nleftrightarrow \infty]^{1/4}$$

and using the above inequality argue that $p_c(\mathbb{Z}^2) \geq 1/2$. (5)